Abstract

Two-fluid Taylor-vortex flow in coaxial cylinders with a stationary outer cylinder and a rotating inner cylinder has potential advantages over the conventional extraction equipment in chemical and bioprocess industries. The two phase flow behavior in the vertical annular region is either in the form of homogeneous dispersion, banded dispersion, segregated or the stratified flow with both the phases retaining individual integrity. Computational fluid dynamics (CFD) simulations have been carried out for the annular region. The effect of physical properties like density difference, interfacial tension, and the effect of geometrical parameters such as annular gap have been studied. The various regime transmissions have been investigated using CFD as well as flow visualization by particle image velocimetry (PIV) and planar laser induced fluorescence (PLIF). The flow pattern has also been measured and compared with the CFD predictions. An attempt has been made to present the results on transition in the form of a regime map with the Eotvos and Taylor numbers as the two coordinates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.