Abstract
The paper further explores the application of computational fluid dynamics (CFD) codes for the study of the heat-transfer phenomena involved when working with fluids at supercritical pressure; bundle analysis is considered here in particular. As for previous simulations performed by the authors considering heat-transfer deterioration inside heated tubes, this application points out the limited capabilities of the most commonly used Reynolds-averaged Navier–Stokes models when approaching the heat-transfer deterioration phenomenon. It must be noted that some of the considered experimental conditions, which are very close to the pseudocritical temperature, represent at the same time one of the most challenging situations for the CFD codes and a very common situation if supercritical water-cooled reactors (SCWRs) will be developed. Improvements of the currently available turbulence models are then needed. The paper analyzes the most likely causes of the observed insufficient quality of the obtained predictions. In addition to comparing the measured and calculated wall temperature trends, the effect of the presence of the spacer grids on the turbulent flow is considered. Spacers are in fact very important to assure the structural stability of fuel, though they also affect the flow, generally improving the turbulence conditions in their neighborhood and slightly impairing it in the downstream region. A comparison between predictions performed including or not including the spacers is also performed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Nuclear Engineering and Radiation Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.