Abstract
The utilization of oxygen transport membranes enables the production of high-purity hydrogen by the thermal decomposition of water below 1000 °C. This process is based on a chemical potential gradient across the membrane, which is usually achieved by introducing a reducing gas. Computational fluid dynamics (CFD) can be used to model reactors based on this concept. In this study, a modelling approach for water splitting is presented in which oxygen transport through the membrane acts as the rate-determining process for the overall reaction. This transport step is implemented in the CFD simulation. Both gas compartments are modelled in the simulations. Hydrogen and methane are used as reducing gases. The model is validated using experimental data from the literature and compared with a simplified perfect mixing modelling approach. Although the main focus of this work is to propose an approach to implement the water splitting in CFD simulations, a simulation study was conducted to exemplify how CFD modelling can be utilized in design optimization. Simplified 2-dimensional and rotational symmetric reactor geometries were compared. This study shows that a parallel overflow of the membrane in an elongated reactor is advantageous, as this reduces the back diffusion of the reaction products, which increases the mean driving force for oxygen transport through the membrane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.