Abstract

PurposeThe aim of this article is to minimize the drag of an unmanned amphibious aerial vehicle (UAAV) and enhancing the endurance.Design/methodology/approachVarious surface geometrical profiles such as rectangular, semicircular groove, razor blade and V-groove riblets are incorporated into the UAAV, and computational fluid dynamic (CFD) analysis is performed for various angles of attack at diverse vehicle speed conditions to estimate the coefficient of drag considering k–e turbulence model. Comparative evaluation between riblet and blunt body shape methodology is performed. Wind tunnel experiments are conducted to validate the flow characteristics around the UAAV.FindingsIt is observed that V-groove riblet method produced minimal drag in comparison with other profiles. The pressure distributions around UAAV for various geometrical profiles suggested that V-groove profile has achieved minimal vortex region, flow separation and turbulent boundary layer near to the outer profile.Originality/valueThe CFD analysis of UAAV for various riblet configurations and validation with wind tunnel smoke test confirms that UAAV with V-groove riblet provides low drag.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.