Abstract

The development of adsorption and membrane-based separation technologies toward more energy and cost-efficient processes is a significant engineering problem facing the world today. An example of a process in need of improvement is the separation of C8 aromatics to recover para-xylene, which is the precursor to the widely used monomer terephthalic acid. Molecular simulations were used to investigate whether the separation of C8 aromatics can be carried out by the porous organic cages CC3 and CC13, both of which have been previously used in the fabrication of amorphous thin-film membranes. Metadynamics simulations showed significant differences in the energetic barriers to the diffusion of different C8 aromatics through the porous cages, especially for CC3. These differences imply that meta-xylene and ortho-xylene will take significantly longer to enter or leave the cages. Therefore, it may be possible to use membranes composed of these materials to separate ortho- and meta-xylene from para-xylene by size ...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.