Abstract

A high-efficiency approach for the synthesis of molecularly imprinted polymers has been developed and further for the solid-phase extraction of sulfonylurea herbicides in food samples. Molecular simulation approach combined chemometric selected metsulfuron-methyl (MSM) and 2-trifluoromethyl acrylic acid (TFMAA) as the template and the monomer to synthesize the molecularly imprinted polymers (MIPs). Experimental validation confirmed that the MSM-imprinted polymers showed a higher selectivity and affinity to sulfonylurea herbicides. The optimized molecularly imprinted solid-phase extraction (MISPE) conditions, including loading, washing, and eluting conditions, were established. The developed MISPE technology combined HPLC-MSMS was successfully used for the determination of sulfonylurea herbicides in foods. Compared with commercial SPE columns, MISPE showed high affinity, excellent selectivity and low matrix effect. The recoveries of sulfonylurea herbicides spiked in four matrices were between 86.4% and 100.2%, with the relative standard deviations (RSD) in the range of 0.9%–10.5%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.