Abstract
Density functional theoretical models of the electronic structure of several configurational isomers and analogues of the [2Fe](H) H-cluster in [FeFe] hydrogenase were analyzed to identify distinguishing features of the canonical cofactor structure potentially relevant to catalysis. Collective analysis of geometric changes over models of oxidized and reduced [2Fe] clusters highlighted movement of the bridging carbonyl and anticorrelation of the proximal and distal Fe-C(terminal) bonds as key explanatory factors for variance over the considered models. Charge and bond order analysis suggest that as the bridging carbonyl favors the distal iron upon reduction, bonding simultaneously becomes more ionic in nature, raising the possibility of simple electrostatic stabilization as a factor in charge accumulation prior to ultimate H(2) creation and release. Frontier orbital energies show cis and trans arrangements of cyanide on the Fe-Fe core to have distinctive energies from the other models, which may be important for redox poise. Altogether, few factors qualitatively distinguish the cis- from the trans-cyano configurations, which may in fact enhance catalytic robustness under conditions leading to exchange of the bridging and terminal carbonyl ligands. However, the naturally occurring trans configuration possesses two distinct donor-metal-acceptor S-Fe-C(O) interactions, which might play a role in enforcing a low-spin ground state for the hydridic mechanism of H(2) production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.