Abstract

We describe a comprehensive framework for performing Bayesian inference for Gaussian graphical models based on the G-Wishart prior with a special focus on efficiently including nondecomposable graphs in the model space. We develop a new approximation method to the normalizing constant of a G-Wishart distribution based on the Laplace approximation. We review recent developments in stochastic search algorithms and propose a new method, the mode oriented stochastic search (MOSS), that extends these techniques and proves superior at quickly finding graphical models with high posterior probability. We then develop a novel stochastic search technique for multivariate regression models and conclude with a real-world example from the recent covariance estimation literature. Supplemental materials are available online.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.