Abstract

This chapter describes computational strategies for investigating the species in the catalytic cycle of the enzyme cytochrome P450, and the mechanisms of its main processes: alkane hydroxylation, alkene epoxidation, arene hydroxylation, and sulfoxidation. The methods reviewed are molecular mechanical (MM)-based approaches (used e.g., to study substrate docking), quantum mechanical (QM) and QM/MM calculations (used to study electronic structure and mechanism).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.