Abstract
Genes that encode glycosylphosphatidylinositol anchored proteins (GPI-APs) constitute an estimated 1-2% of eukaryote genomes. Current computational methods for the prediction of GPI-APs are sensitive and specific; however, the analysis of the processing site (omega- or omega-site) of GPI-APs is still challenging. Only 10% of the proteins that are annotated as GPI-APs have the omega-site experimentally verified. We describe an integrated computational and experimental proteomics approach for the identification and characterization of GPI-APs that provides the means to identify GPI-APs and the derived GPI-anchored peptides in LC-MS/MS data sets. The method takes advantage of sequence features of GPI-APs and the known core structure of the GPI-anchor. The first stage of the analysis encompasses LC-MS/MS based protein identification. The second stage involves prediction of the processing sites of the identified GPI-APs and prediction of the corresponding terminal tryptic peptides. The third stage calculates possible GPI structures on the peptides from stage two. The fourth stage calculates the scores by comparing the theoretical spectra of the predicted GPI-peptides against the observed MS/MS spectra. Automated identification of C-terminal GPI-peptides from porcine membrane dipeptidase, folate receptor and CD59 in complex LC-MS/MS data sets demonstrates the sensitivity and specificity of this integrated computational and experimental approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.