Abstract

Mosquitoes are prolific disease vectors that affect public health around the world. Although many studies have investigated search strategies used by host-seeking adult mosquitoes, little is known about larval search behaviour. Larval behaviour affects adult body size and fecundity, and thus the capacity of individual mosquitoes to find hosts and transmit disease. Understanding vector survival at all life stages is crucial for improving disease control. In this study, we use experimental and computational methods to investigate the chemical ecology and search behaviour of Aedes aegypti mosquito larvae. We first show that larvae do not respond to several olfactory cues used by adult Ae. aegypti to assess larval habitat quality, but perceive microbial RNA as a potent foraging attractant. Second, we demonstrate that Ae. aegypti larvae use chemokinesis, an unusual search strategy, to navigate chemical gradients. Finally, we use computational modelling to demonstrate that larvae respond to starvation pressure by optimizing exploration behaviour—possibly critical for exploiting limited larval habitat types. Our results identify key characteristics of foraging behaviour in an important disease vector mosquito. In addition to implications for better understanding and control of disease vectors, this work establishes mosquito larvae as a tractable model for chemosensory behaviour and navigation.

Highlights

  • The mosquito Aedes aegypti is a global vector of diseases such as Dengue, Zika and Chikungunya [1]

  • We tested the response of larvae to RNA, glucose and a mixture of nine amino acids required for Ae. aegypti larval growth

  • All three components are essential for Ae. aegypti survival [27], and RNA polynucleotides serve as attractants or essential nutrients for larvae of other mosquito species [28,29,30,31]

Read more

Summary

Introduction

The mosquito Aedes aegypti is a global vector of diseases such as Dengue, Zika and Chikungunya [1] This synanthropic mosquito is evolutionarily adapted to human dwellings, with some populations breeding exclusively indoors [2,3]. The urban microhabitat features unique climatic regimes, photoperiod and resource availability In response to these selective pressures, successful synanthropic animals including cockroaches [4], rats [5] and crows [6] exhibit many behaviours absent in non-urbanized sibling species. Understanding these behaviours is of major importance to public health. Throughout human history, synanthropic disease vectors have caused devastating pandemics like the Black

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.