Abstract

β-Hydride elimination in Fe(II)– and Co(II)–alkyl complexes is known to occur through two different spin multiplicity states and is thus a good example of two-state reactivity. In this study, the automated reaction path search method combined with the mixed-spin effective Hamiltonian approach has been applied to understand the detailed reaction mechanisms including the characterization of the spin-inversion points between the high-spin and low-spin potential energy surfaces for the Fe(II)–C2H5 and Co(II)–C2H5 complexes supported by a β-diketiminate ligand. Density functional theory (DFT) with different exchange-correlation functionals has been used in the reaction path search calculations. We found that the β-hydride elimination process for these complexes consists of multiple steps including two spin-inversion points. We have also investigated the substituent effect in the β-diketiminate ligand to understand the steric and electronic effects on the spin-inversion process. The efficiency of the spin-inver...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.