Abstract

Emerging evidence suggests that specific spatio-temporal microRNA (miRNA) expression is required for heart development. In recent years, hundreds of miRNAs have been discovered. In contrast, functional annotations are available only for a very small fraction of these regulatory molecules. In order to provide a global perspective for the biologists who study the relationship between differentially expressed miRNAs and heart development, we employed computational analysis to uncover the specific cellular processes and biological pathways targeted by miRNAs in mouse heart development. Here, we utilized Gene Ontology (GO) categories, KEGG Pathway, and GeneGo Pathway Maps as a gene functional annotation system for miRNA target enrichment analysis. The target genes of miRNAs were found to be enriched in functional categories and pathway maps in which miRNAs could play important roles during heart development. Meanwhile, we developed miRHrt (http://sysbio.suda.edu.cn/mirhrt/), a database aiming to provide a comprehensive resource of miRNA function in regulating heart development. These computational analysis results effectively illustrated the correlation of differentially expressed miRNAs with cellular functions and heart development. We hope that the identified novel heart development-associated pathways and the database presented here would facilitate further understanding of the roles and mechanisms of miRNAs in heart development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.