Abstract

We present adaptive mixed hybrid finite element discretizations of the Richards equation, a nonlinear parabolic partial differential equation modeling the flow of water into a variably saturated porous medium. The approach simultaneously constructs approximations of the flux and the pressure head in Raviart–Thomas spaces. The resulting nonlinear systems of equations are solved by a Newton method. For the linear problems of the Newton iteration a multigrid algorithm is used. We consider two different kinds of error indicators for space adaptive grid refinement: superconvergence and residual based indicators. They can be calculated easily by means of the available finite element approximations. This seems attractive for computations since no additional (sub-)problems have to be solved. Computational experiments conducted for realistic water table recharge problems illustrate the effectiveness and robustness of the approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.