Abstract

The absolute hardness in density functional theory (DFT) is discussed, emphasizing the charge-transfer excitation interpretation. Direct evaluation from the computed ionization potential and electron affinity is intrinsically problematic when the affinity is negative; the calculated affinity exhibits a strong basis set dependence, becoming near zero as diffuse functions are added. An alternative Koopmans-based approximation using local functional eigenvalues uniformly and significantly underestimates the hardness. A simple correction to the Koopmans expression is highlighted on the basis of a consideration of the integer discontinuity. The resulting hardness expression does not require the explicit computation of the affinity and has a straightforward interpretation in terms of the electronegativity. The correction eliminates the underestimation and gives hardness values that do not degrade as the electron affinity becomes more negative. For systems with large negative affinities, the values are an improvement over those from the other approaches. The success can be traced to an implicit, unconventional approximation for the electron affinity, which outperforms the standard approach when the affinity is significantly negative and which does not break down as the basis set becomes more diffuse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.