Abstract

An efficient method for predicting the strength of debonded composite skin-stiffener configurations is presented. This method, which is based on fracture mechanics, models the skin and the stiffener with two-dimensional (2D) plate elements instead of three-dimensional (3D) solid elements. The skin and stiffener flange nodes are tied together by two modeling techniques. In one technique, the corresponding flange and skin nodes are required to have identical translational and rotational degrees-of-freedom. In the other technique, the corresponding flange and skin nodes are only required to have identical translational degrees-of-freedom. Strain energy release rate formulas are proposed for both modeling techniques. These formulas are used for skin-stiffener debond cases with and without cylindrical bending deformations. The cylindrical bending results are compared with plane-strain finite element results. Excellent agreement between the two sets of results is obtained when the second technique is used. Thus, from these limited studies, a preferable modeling technique for skin-stiffener debond analysis using plate elements is established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.