Abstract

ABSTRACTHere we apply and expand the knowledge developed in the case of the H atom to describe high-harmonic generation (HHG) for the H2 molecule by using time-dependent configuration interaction with single excitations. The implications of using a finite atomic orbital basis set and the impact of a heuristic lifetime model which addresses ionisation losses are discussed. We also examine the influence of the angular momentum of the basis on the computed HHG spectra. Moreover, we discuss the impact of adding diffuse functions and ghost atoms in different geometrical configurations around the molecule. The effects of these additional centres on the HHG spectra are correlated with the physical interpretation of this nonlinear optical phenomenon as given by the three-step model, relating the maximal radial extent of the electron as predicted by the model to the radial extent of the Gaussian basis sets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.