Abstract

The general Tarasov function is fitted to the skeletal heat capacities of materials with widely different crystal structures. Examples are chosen from flexible macromolecules (polyethylene, polypropylene, poly(ethylene terephthalate), selenium, rigid macromolecules (diamond and graphite), and a small molecule (fullerene, C60). A new optimization approach using the MathematicaTM software is developed. It results in one-, two-, and three-dimensional Debye temperatures, Θ1, Θ2 and Θ3 the fitting parameters of the Tarasov function. In addition to the Tarasov function, the evaluation of the heat capacities makes use of approximate group-vibrational spectra. The results support the earlier assumption that Θ2=Θ3 for simple, solid, linear macromolecules. In more complicated bonding situations, Θ1, Θ2 and Θ3 are used as averaging fitting parameters. This general approach provides an improvement in the quantitative thermal analyses of polymers and other substances included in the ATHAS Data Bank. Sufficient programming information is provided to enable anyone the computation with a copy of the popular MathematicaTM software. The programming file is also downloadable from the WWW.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.