Abstract

In this paper, a novel high accuracy computation method for interpolation error constants is proposed over the geometric simplex finite elements. Firstly, the expansions of bounded linear operators are employed to derive the explicit estimate of interpolation error constants, which depend only on the shape of the geometric simplex finite elements and the definition of interpolation functions. Then, this method is applied to the linear interpolation function, and the results are consistent with our analysis. Finally, some numerical examples are given to validate our analysis. Such high accuracy computation method for interpolation error constants are beneficial attempts to accelerate the adaptive computation and verification of finite element solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.