Abstract

A blade forced response prediction system has been developed using an implicit two-dimensional CFD solver to model the rotor blade forced response due to the static pressure distortion (potential disturbance) from the downstream stator vanes and struts. The CFD solver predicts the static pressure distortion upstream of the stator vanes and struts, which is used to calculate the induced velocity perturbation at the rotor inlet. Using the velocity perturbation and the blade’s natural frequencies and mode shapes from a finite element model, the unsteady aerodynamic modal forces and the aerodynamic damping are calculated. A modal response solution is then performed. The results show that the stator vanes cause a significant amplification of the potential disturbances due to the struts. Effects of strut and vane modifications are examined using the analysis. A vane modification with an “optimized” flow angle distribution shows that the disturbance can be greatly reduced. Recent testing of the strut modification shows exceptional correlation with the prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.