Abstract

Metastasis remains the primary cause of cancer mortality. Throughout the process of metastasis, cancer cells experience mechanical forces, which may turn out to be the key towards their migratory, homeostatic and survival characteristics. However, the influence of compressive stress on the underlying mechanism of cancer cell adaptation during metastasis has remained grossly unexplored. In this study, we have investigated whether compressive force induces autophagy in HeLa cells with potential implications in cellular invasiveness. To this end, we have adopted a simple strategy to create the mechanically-compressed tumor microenvironment, in vitro, by applying appropriate compression to agarose-scaffolded HeLa cell-encapsulated alginate beads. Our findings confirm that compression upregulates autophagy, which promotes paxillin turnover and active MMP-2 secretion, leading to enhanced migration of HeLa cells. We further show that autophagy induction by compression is affected by the phosphorylation of p38 MAPKs, a process that is mediated by intact membrane lipid rafts. Identifying the role of such mechanically triggered cellular responses, guiding crucial processes like cell migration, may lead to better understanding of the mechanobiological aspects of metastatic cancer and unveil potential therapeutic targets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.