Abstract

An experimental program was carried out to study the mechanical properties and pore structure of high-performance concrete (HPC) and normal-strength concrete after exposure to high temperature. After the concrete specimens were subjected to a temperature of 800°C, their residual compressive strength was measured. The porosity and pore size distribution of the concrete were investigated by using mercury intrusion porosimetry. Test results show that HPC had higher residual strength, although the strength of HPC degenerated more sharply than the normal-strength concrete after exposure to high temperature. The changes in pore structure could be used to indicate the degradation of mechanical property of HPC subjected to high temperature. A model was developed by optimizing the parameters in the Ryshkewitch model to predict the relationship between porosity and the strength of HPC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.