Abstract

AbstractMeta-sediments in the Larsemann Hills that preserve a coherent stratigraphy, form a cover sequence deposited upon basement of mafic–felsic granulite. Their outcrop pattern defines a 10 kilometre wide east–west trending synclinal trough structure in which basement–cover contacts differ in the north and the south, suggesting tectonic interleaving during a prograde, D1 thickening event. Subsequent conditions reached low-medium pressure granulite grade, and structures can be divided into two groups, D2 and D3, each defined by a unique lineation direction and shear sense. D2 structures which are associated with the dominant gneissic foliation in much of the Larsemann Hills, contain a moderately east-plunging lineation indicative of west-directed thrusting. D2 comprises a colinear fold sequence that evolved from early intrafolial folds to late upright folds. D3 structures are associated with a high-strain zone, to the south of the Larsemann Hills, where S3 is the dominant gneissic layering and folds sequences resemble D2 folding. Outside the D3 high-strain zone occurs a low-strain D3 window, preserving low-strain D3 structures (minor shear bands and upright folds) that partly re-orient D2 structures. All structures are truncated by a series of planar pegmatites and parallel D4 mylonite zones, recording extensional dextral displacements.D2 assemblages include coexisting garnet–orthopyroxene pairs recording peak conditions of ∼ 7 kbar and ∼ 780°C. Subsequent retrograde decompression textures partly evolved during both D2 and D3 when conditions of ∼ 4–5 kbar and ∼ 750°C were attained. This is followed by D4 shear zones which formed around 3 kbar and ∼ 550°C.It is tempting to combine D2–4 structures in one tectonic cycle involving prograde thrusting and thickening followed by retrograde extension and uplift. The available geochronological data, however, present a number of interpretations. For example, D2 was possibly associated with a clockwise P–T path at medium pressures around ∼ 1000 Ma, by correlation with similar structures developed in the Rauer Group, whilst D3 and D4 events occurred in response to extension and heating at low pressures at ∼ 550 Ma, associated with the emplacement of numerous granitoid bodies. Thus, decompression textures typical for the Larsemann Hills granulites maybe the combined effect of two separate events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.