Abstract

The behavior of thin cylindrical shells under axial compression is very sensitive to imperfections in the initial geometry. Local axisymmetric imperfections are among the most detrimental and have been shown to be a regular feature of circumferentially welded joints in civil engineering shell structures such as steel silos and tanks. Many of the experiments on which current design rules are based were performed on elastic Mylar, copper, or aluminum specimens, which have some very different characteristics to those of steel shells. Furthermore, very few laboratory tests have ever examined the consequences of fabrication processes on shell buckling strength, although these strongly influence the amplitudes and forms of geometric imperfections. This paper presents the findings of a careful experimental program on large steel cylinders fabricated with a fully welded circumferential joint. Thorough measurements were made of the initial imperfections and their transformation into a buckling mode. The results are compared with elastic-plastic finite-element predictions and the most recent design standard.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.