Abstract

Scientific simulations on high-performance computing (HPC) systems generate vast amounts of floating-point data that need to be reduced in order to lower the storage and I/O cost. Lossy compressors trade data accuracy for reduction performance and have been demonstrated to be effective in reducing data volume. However, a key hurdle to wide adoption of lossy compressors is that the trade-off between data accuracy and compression performance, particularly the compression ratio, is not well understood. Consequently, domain scientists often need to exhaust many possible error bounds before they can figure out an appropriate setup. The current practice of using lossy compressors to reduce data volume is, therefore, through trial and error, which is not efficient for large datasets which take a tremendous amount of computational resources to compress. This paper aims to analyze and estimate the compression performance of lossy compressors on HPC datasets. In particular, we predict the compression ratios of two modern lossy compressors that achieve superior performance, SZ and ZFP, on HPC scientific datasets at various error bounds, based upon the compressors' intrinsic metrics collected under a given base error bound. We evaluate the estimation scheme using twenty real HPC datasets and the results confirm the effectiveness of our approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.