Abstract

A potentially promising approach to fusion employs a plasma shell to radially compress two colliding plasmoids. The presence of the magnetic field in the target plasma suppresses the thermal transport to the confining shell, thus lowering the imploding power needed to compress the target to fusion conditions. With the momentum flux being delivered by an imploding plasma shell, many of the difficulties encountered in imploding a solid metal liner are eliminated or minimized. The best plasma for the target in this approach is the FRC. It has demonstrated both high β, and robustness in translation and compression that is demanded for the target plasma. A high density compressed plasmoid is formed by a staged axial and radial compression of two colliding/merging FRCs where the energy that is required for the implosion compression and heating of the magnetized target plasmoid is stored in the kinetic energy of the plasmas used to compress it. An experimental apparatus is being constructed for the demonstration of both the target plasmoid formation as well as the compression of the plasmoid by a plasma liner. It is believed that with the confinement properties and the high β nature of the FRC, combined with the unique approach to be taken, that an nτETi triple product ∼5 × 1017 m−3 s keV can be achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.