Abstract

Cochlear compression in normal-hearing listeners was estimated at octave frequencies from 250 to 4000 Hz using a forward-masking paradigm. Temporal masking curves (TMCs) for a 10-dB SL signal were obtained with two maskers – one equal in frequency to the signal and another an octave below the signal. The ratio of the slope of the off-frequency function to that of the mid-level portion of the on-frequency function was computed as an estimate of the amount of compression at each frequency. Compression was less frequency selective at low frequencies, so an average of the off-frequency slopes at high frequencies (1000, 2000, and 4000 Hz) was used in computing the ratio for each signal frequency. Results indicated strong compression (∼0.15–0.30) at all frequencies using the averaged off-frequency slopes, indicating little difference in compression across frequencies. Distortion product otoacoustic emission (DPOAE) input–output (I–O) functions were obtained for each subject at 1000, 2000, and 4000 Hz. The slopes of the DPOAE I–O functions and the psychophysical growth rates were similar to one another, reinforcing the assumption that the forward-masking procedure is providing an estimate of cochlear compression, at least at frequencies from 1000 to 4000 Hz.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.