Abstract

AbstractThe compression‐compression fatigue performance of carbon nanotube (CNT) reinforced aluminium matrix composite foams (AMCFs) were investigated. The ε‐N curves of AMCFs are composed of three stages (the elastic, strain hardening, and rapid accumulation stages), while the fatigue strain of AMCFs accumulates very rapidly in stage III compared with Al foams. The fatigue strength of AMCFs with CNT contents of 2.0, 2.5, and 3.0 wt% increases by 6%, 44%, and 102% than Al foams, respectively. Different from Al foams' deformation of layer‐by‐layer, the main failure modes of AMCFs are the brittle fracture and collapse of pores within significant shear deformation bands under fatigue loading. The uniform distribution of CNTs and good interfacial bonding of CNTs and Al matrix is the important factor for the improvement of fatigue properties of AMCFs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.