Abstract

The parameters of the minimal supersymmetric standard model appear to require uncomfortably precise adjustment in order to reconcile the electroweak symmetry breaking scale with the lower mass limits on a neutral Higgs scalar boson. This problem can be significantly ameliorated in models with a running gluino mass parameter that is smaller than the wino mass near the scale of unification of gauge couplings. A compressed superpartner mass spectrum results; compared to models with unified gaugino masses, the ratios of the squark and gluino masses to the lightest superpartner mass are reduced. I argue that in this scenario the annihilation of binolike neutralino pairs to top-antitop quark pairs through top-squark exchange can most naturally play the crucial role in ensuring that the thermal relic dark matter density is not too large, with only a small role played by coannihilations. The lightest superpartner mass must then exceed the top-quark mass, and the lighter top squark cannot decay to a top quark. These conditions have important implications for collider searches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.