Abstract

Photoacoustic tomography (PAT) is an emerging imaging modality that aims at measuring the high-contrast optical properties of tissues by means of high-resolution ultrasonic measurements. The interaction between these two types of waves is based on the thermoacoustic effect. In recent years, many works have investigated the applicability of compressed sensing to PAT, in order to reduce measuring times while maintaining a high reconstruction quality. However, in most cases, theoretical guarantees are missing. In this work, we show that in many measurement setups of practical interest, compressed sensing PAT reduces to compressed sensing for undersampled Fourier measurements. This is achieved by applying known reconstruction formulae in the case of the free-space model for wave propagation, and by applying the theories of Riesz bases and nonuniform Fourier series in the case of the bounded domain model. Extensive numerical simulations illustrate and validate the approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.