Abstract

We report a detailed investigation of the low-temperature transport properties (5--300 K) on polycrystalline samples of $\mathrm{S}{\mathrm{n}}_{1+x}\mathrm{Te}$ ($x=0$ and 0.03) prepared by melt quenching in water and slow cooling. These two different synthetic routes result in variations in the hole concentration over more than one order of magnitude, allowing for a systematic investigation of the influence of Sn vacancies on the transport properties. The results evidence a strong correlation between the details of the synthetic process and the concentration of Sn vacancies. Transmission electron microscopy and M\"ossbauer spectroscopy show that the excess Sn, which helps to lower the hole concentration, segregates at grain boundaries. Interestingly, Hall-effect measurements reveal that charge transport is dominated near 300 K by alloy scattering regardless of the hole concentration. In addition to dictating the electronic properties, the concentration of Sn vacancies has also a significant impact on the thermal transport, with the magnitude of the low-temperature Umklapp peak observed in the lattice thermal conductivity near 30 K scaling with the concentration of Sn vacancies that act as efficient point-defect scatterers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.