Abstract

The perceptual difference model (Case-PDM) is being used to quantify image quality of fast MR acquisitions and sparse reconstruction algorithms as compared to slower, full k-space, high quality reference images. To date, most perceptual difference models average image quality over a wide range of image degradations and assume that the observer has no bias towards any of them. Here, we create metrics weighted to different types of artifacts, calibrated to a human observer's preference, and then aggregate them to produce a comprehensive evaluation. The selective PDM is tuned using test images from an input reference image degraded by noise, blur, aliasing, or oil-painting. To each artifact, responses of cortex channels in the PDM are normalized to be weights used for selective evaluation. A pair comparison experiment based on functional measurement theory was used to calibrate selective PDM score of each artifact to its measured disturbance. Test images of varying quality were from identical reference image degraded by one type of artifact. We found that human observers rated aliasing > blur > oil-painting > noise. In order to validate the new evaluation approach, PDM scores were compared to human ratings across a large set of compressed sensing MR reconstruction test images of varying quality. Human ratings (i.e. overall, noise, blur, aliasing, and oil-painting ratings) were obtained from a modified Double Stimulus Continuous Quality Scale experiment. For 3 brain images (transverse, sagittal, and coronal planes), averaged r values [comprehensive-PDM, noise-PDM, blur-PDM, aliasing-PDM, oilpainting- PDM] were [0.947±0.010, 0.827±0.028, 0.913±0.005, 0.941±0.016, 0.884±0.025]. We conclude the weighted Case-PDM is useful for selectively evaluating MR reconstruction artifacts and the proposed comprehensive PDM score can faithfully represent human evaluation, especially when demonstrating artifact bias, of compressed sensing reconstructed MR images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.