Abstract
This paper reports on a newly developed mobile mass spectrometer for comprehensive on-line analysis of complex gas mixtures such as ambient air or industrial process gases. Three ionization methods, namely, the resonance-enhanced multiphoton ionization (REMPI), vacuum-ultraviolet single-photon ionization (SPI), and electron impact ionization (EI) are implemented in this instrument and can be operated (quasi-) simultaneously. By means of this setup, a wide range of compounds can be analyzed due to the unique ionization selectivitiy and sensitivity profiles provided by the different ionization techniques. The mass spectrometer is designed for field application even under severe conditions. The REMPI technique is suitable for the selective and soft ionization (without fragmentation) of aromatic compounds at trace level (ppbv/pptv). The also soft but less selective SPI technique with 118-nm vacuum-ultraviolet laser pulses is used as a second laser-based ionization method. Mass spectra obtained by this technique show profiles of most organic compounds (aliphatic and aromatic species) and of some low IP inorganic substances (e.g., ammonia, nitrogen oxide) down to ppbv concentrations. In addition to the laser-based ionization techniques, EI ionization can be used for analysis of the bulk components such as water, oxygen, nitrogen, and carbon dioxide as well as for detection of inorganic minor components such as HCN or HCl from combustion flue gases at ppmv concentration levels. Each method yields specific mass spectrometric information of the sample composition. Special techniques have been developed to combine the three ionization methods in a single mass spectrometer and to allow the quasi-parallel application of all three ionization techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.