Abstract

In this study, an electric vehicle (EV) dynamic model is devised that amalgamates mechanical design aspects—such as aerodynamic effects, tire friction, and vehicle frontal area—with crucial components of the electrical infrastructure, including the electric motor, power converters, and battery systems. Verification of the model is executed through a comprehensive multidisciplinary analysis utilizing CATIA, ANSYS Electromagnetics, ANSYS Fluent, and MATLAB–Simulink tools, which are applied to evaluate two alternative lightweight EV prototypes. The process involves initial computations of critical inputs for the dynamic model, including aerodynamic lift (C1), drag coefficients (Cd), and frontal area (Af). Subsequent stages entail the detailed design and analysis of a 2 kW brushless permanent magnet electric motor in ANSYS Electromagnetics to map efficiency contours across various speed–torque values. Integration of these parameters into a MATLAB–Simulink dynamic model, connected with motor drive inverter and battery models, allows for simulation-based energy consumption analysis under race track slope profiles. Remarkably, the findings underscore the considerable impact of neglected parameters on energy consumption, often exceeding fifty percent of the total. Consequently, an energy-efficient EV prototype is manufactured and rigorously tested under specified drive conditions, affirming the validation of the comprehensive multidisciplinary EV dynamic model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.