Abstract

This paper presents a comprehensive investigation of statistical effects in deeply scaled nitride memory cells, considering both atomistic substrate doping and the discrete and localized nature of stored charge in the nitride layer. By means of 3-D TCAD simulations, the statistical dispersion of the threshold voltage shift induced by a single localized electron in the nitride is evaluated in presence of non-uniform substrate conduction. The role of 3-D electrostatics and atomistic doping on the results is highlighted, showing the latter as the major spread source. The threshold voltage shift induced by more than one electron in the nitride is then analyzed, showing that for increasing numbers of stored electrons a correlation among single-electron shifts clearly appears. The scaling trend and the practical impact of these statistical effects on cell operation are discussed in Part II of this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.