Abstract

Comprehensive site investigation techniques, including Electrical Resistivity Tomography (ERT), Induced Polarization (IP), Multichannel Analysis of Surface Waves (MASW), and Microtremor Array Method (MAM), were integrated with geotechnical and geochemical tests of retrieved waste samples from Singapore’s operational offshore landfill. The properties of landfill wastes vary widely, including shear-wave velocities 127-248m/s, densities 1.2-2.1 Mg/m3, resistivity 3.0-25.3 Ω∙m, and chargeability 48-82mV/V. The natural clay layer underneath was clearly delineated and effectively mitigated leachate leakage. K-means clustering of the geophysical data facilitates precise mapping of waste distribution and quantities of recoverable metals based on quantitative criteria. This study illustrates a thorough case study adopting the new site investigation and characterization paradigm for an offshore landfill, which provides insights into leachate leakage detection and evaluations of landfill mining and resource recovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.