Abstract

Protein phosphorylation is an essential post-translational modification that regulates multiple cellular processes. Due to their low stoichiometry and ionization efficiency, it is critical to efficiently enrich phosphopeptides for phosphoproteomics. Several phosphopeptide enrichment methods have been reported; however, few studies have comprehensively compared different TiO2-based phosphopeptide enrichment methods using complex proteomic samples. Here, we compared four TiO2-based phosphopeptide enrichment methods that used four non-phosphopeptide excluders (glutamic acid, lactic acid, glycolic acid, and DHB). We found that these four TiO2-based phosphopeptide enrichment methods had different enrichment specificities and that phosphopeptides enriched by the four methods had different physicochemical characteristics. More importantly, we discovered that phosphopeptides had a higher deamidation ratio than peptides from cell lysate and that phosphopeptides enriched using the glutamic acid method had a higher deamidation ratio than the other three methods. We then compared two phosphopeptide fractionation methods: ammonia- or TEA-based high pH reversed-phase (HpH-RP). We found that fewer phosphopeptides, especially multi-phosphorylated peptides, were identified using the ammonia-based method than using the TEA-based method. Therefore, the TEA-based HpH-RP fractionation method performed better than the ammonia method. In conclusion, we comprehensively evaluated different TiO2-based phosphopeptide enrichment and fractionation methods, providing a basis for selecting the proper protocols for comprehensive phosphoproteomics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.