Abstract

The objectives of this study were to evaluate 4 aspects of ion-leaching restorative materials (ILMs): 4-point bending flexural strength (4 PB-FS) and relative mechanical properties; biaxial flexural strength (B-FS) in relation to 4 PB-FS; porosity; and surface morphology. Eleven ILMs were used for the 4-point bending test. Bar-shaped (n = 15) samples were fabricated, stored in distilled water for 7 days. Then 4 PB-FS and the other mechanical properties were determined. Five ILMs were selected for the B-FS test using disk specimens (n = 15). The correlation between 4 PB-FS and B-FS was addressed. After the 4 PB test, 5 randomised fragments from each material were used to make 0.5 mm-thick sections for light microscopy to investigate the degree of porosity using reflected and transmitted lights. Eight ILMs were selected for quantitative analysis of the fractional % pore volume (PV%) due to their relative pore prominence using ImageJ software. One-way ANOVA/Dunnett's T3 was used to test for significance. Resin-based ILMs (RB-ILMs) were ranked first (p < 0.05) for 4 PB-FS values (53.3–110.2 MPa) followed by resin-modified glass-ionomer cements (RMGICs; 30.9–44.3 MPa) and high-viscosity glass-ionomer cements (HVGICs; 12.9–19.6 MPa), respectively. ‘Flexural modulus’ (4 PB-E) and ‘flexural toughness’ (4 PB-T) of ILMs varied even though similar 4 PB-FS values were observed. There was a positive correlation (p < 0.001) between 4PB-FS and B-FS (R2 = 0.992) with B-FS>4 PB-FS. There was no correlation between PV% and 4 PB-FS. In summary, material type played a major role in 4 PB-FS outcomes, whereas PV% seemed to have a minor effect when evaluating each material group of ILMs. Brittleness/ductility of ILMs was observed when determining 4 PB-E and 4 PB-T relative to 4 PB-FS. When selecting materials for posterior load-bearing dental restorations in high-caries risk patients, RB-ILMs or RMGICs would be more appropriate due to their superior flexural properties compared with recently introduced HVGICs. The decision for each situation will also be dependent on further evidence of the ion-leaching capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.