Abstract

AbstractA Delta Plus XL continuous flow gas chromatography/high‐temperature conversion‐isotope ratio mass spectrometer system (GC‐TC‐IRMS) with a liquid nitrogen trap installed at the end of the micropyrolysis oven was used to measure hydrogen isotope (δ2H) values of 1,2‐dichloroethane (1,2‐DCA). The 1,2‐DCA δ2H values were within uncertainty of the δ2H value for the same 1,2‐DCA analyzed using off‐line sample preparation and conventional dual inlet mass spectrometry, verifying that this system can accurately measure 1,2‐DCA δ2H values. After 71 reproducible and accurate 1,2‐DCA δ2H measurements had been obtained, the standard deviation on the mean of the cumulative 1,2‐DCA δ2H measurements was greater than ±5‰. The cumulative load of chlorine at this point was ∼5.5 × 10−6 moles, which may be the limit to the quantity of chlorine that can be input before the reproducibility of 1,2‐DCA δ2H measurements is compromised. This study is the first to our knowledge to demonstrate a method for obtaining accurate and reproducible compound‐specific δ2H values for chlorinated hydrocarbons at dissolved concentrations typical of field conditions. Paired δ2H and δ13C values suggest that dual parameter isotopic measurements can distinguish between different contaminant sources, as well as providing additional constraints on degradation pathways and contaminant remediation. Copyright © 2007 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.