Abstract

Optical metasurfaces offer a compact platform for manipulation of the amplitude, phase, and polarization state of light. Independent control over these properties, however, is hindered by the symmetric transmission matrix associated with single-layer metasurfaces. Here, we utilize multilayer birefringent meta-optics to realize high-efficiency, independent control over the amplitude, phase, and polarization state of light. High-efficiency control is enabled by redistributing the wavefront between cascaded metasurfaces, while end-to-end inverse design is used to realize independent complex-valued functions for orthogonal polarization states. Based on this platform, we demonstrate spatial mode division multiplexing, optical mode conversion, and universal vectorial holograms, all with diffraction efficiencies over 80%. This meta-optic platform expands the design space of flat optics and could lead to advances in optical communications, quantum entanglement, and information encryption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.