Abstract

Abstract Two composts were obtained by co-composting of a concentrated depotassified beet vinasse and cotton gin waste using two different aeration systems: static aerated pile (forced aeration provided by a blower whom operated in the positive mode) and windrow (turned pile). The composting mixtures were cotton gin trash (55%) and vinasse (45%) (dry weight). In static pile, the total amount of vinasse was added at the beginning of the process whereas, in windrow two additions of vinasse were performed. Differences in temperature changes between both composting systems were found: a faster increase of temperature in the windrow (54 °C at 7 days) than in the static pile (45 °C at 21 days) was observed. Probably in the static pile system, the compaction of the substrates made difficult the correct distribution of the air inside the pile. Moreover, after the second addition of vinasse a new thermophilic phase was started in windrow. The different aeration systems and the way of addition of vinasse could cause differences in organic matter (OM) degradation and in weight (22.6% for the static pile and 26.7% for the windrow) and gas losses during the process. Nevertheless, the composts obtained by the two systems had a high fertilizer value (25.1 g kg −1 N; 3.2 g kg −1 P 2 O 5 ; 21.4 g kg −1 K 2 O; C/N8) for compost obtained in static pile and (16.2 g kg −1 N; 3.4 g kg −1 P 2 O 5 ; 16.1 g kg −1 K 2 O; C/N 12) for compost obtained in the windrow). A high degree of stability was reached in the final composts. Composting of vinasse with cotton gin waste serves two objectives, disposal of wastes and recycling of waste components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.