Abstract

Asymmetric diblock (DBC) and triblock (TBC) copolymers contained biocompatible chemically complementary polyacrylamide and poly(ethylene oxide) (PAAm-b-PEO-b-PAAm) or its monomethyl ether (MEPEO-b-PAAm), and also partially hydrolyzed triblock copolymer derivative (TBChydr) were used to create micelles of a special type. The micelles obtained are characterized by small CMCs and large values of the Gibbs micellization energy, thus indicating a high stability of DBC, TBC and TBChydr micelles in aqueous solutions and the capabilities of their use to encapsulate and deliver poorly soluble and/or toxic drugs in living organism. Morphological features and size of DBC and TBC micelles were determined by TEM. The electron images demonstrated spherical micelles of a polymolecular type, monomolecular type and separate micelle aggregates. TBC and TBChydr micelles were used to examine in vitro anticancer activity of their compositions with doxorubicin (Dox). The created micelle systems showed the enhanced cytotoxicity as compared to individual Dox against murine leukemia cells of L1210 line, murine transformed fibroblasts of L929 line and human T-leukemia cells of Jurkat line and allow to achieve a high efficacy at low Dox concentrations (0,1÷3 µg·cm-3) that opens the great prospects for essential decrease in drug dose at chemotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.