Abstract
We report on the epitaxial growth of wide-band-gap cubic-phase MgxZn1−xO thin films on Si(100) by pulsed-laser deposition and fabrication of oxide-semiconductor-based ultraviolet photodetectors. The challenges of large lattice and thermal expansion mismatch between Si and MgxZn1−xO have been overcome by using a thin SrTiO3 buffer layer. The heteroepitaxy of cubic-phase MgxZn1−xO on Si was established with epitaxial relationship of MgxZn1−xO(100)//SrTiO3(100)//Si(100) and MgxZn1−xO[100]//SrTiO3[100]//Si[110]. The minimum yield of the Rutherford backscattering ion channeling in MgxZn1−xO layer was only 4%, indicating good crystalline quality of the film. Smooth surface morphology with rms roughness of 0.6 nm was observed using atomic force microscopy. Photodetectors fabricated on Mg0.68Zn0.32O/SrTiO3/Si show peak photoresponse at 225 nm, which is in the deep UV region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.