Abstract
Recent studies indicated that nanowire format of materials is ideal for enhancing the thermoelectric performance of materials. Most of these studies were performed using individual nanowires as the test elements. It is not currently clear whether bulk assemblies of nanowires replicate this enhanced thermoelectric performance of individual nanowires. Therefore, it is imperative to understand whether enhanced thermoelectric performance exhibited by individual nanowires can be extended to bulk assemblies of nanowires. It is also imperative to know whether the addition of metal nanoparticle to semiconductor nanowires can be employed for enhancing their thermoelectric performance further. Specifically, it is important to understand the effect of microstructure and composition on the thermoelectric performance on bulk compound semiconductor nanowire–metal nanoparticle composites. In this study, bulk composites composed of mixtures of copper nanoparticles with either unfunctionalized or 1,4-benzenedithiol (BDT) functionalized Zn3P2 nanowires were fabricated and analyzed for their thermoelectric performance. The results indicated that use of BDT functionalized nanowires for the fabrication of composites leads to interface-engineered composites that have uniform composition all across their cross-section. The interface engineering allows for increasing their Seebeck coefficients and electrical conductivities, relative to the Zn3P2 nanowire pellets. In contrast, the use of unfunctionalized Zn3P2 nanowires for the fabrication of composite leads to the formation of composites that are non-uniform in composition across their cross-section. Ultimately, the composites were found to have Zn3P2 nanowires interspersed with metal alloy nanoparticles. Such non-uniform composites exhibited very high electrical conductivities, but slightly lower Seebeck coefficients, relative to Zn3P2 nanowire pellets. These composites were found to show a very high zT of 0.23 at 770 K, orders of magnitude higher than either interface-engineered composites or Zn3P2 nanowire pellets. The results indicate that microstructural composition of semiconductor nanowire–metal nanoparticle composites plays a major role in determining their thermoelectric performance, and such composites exhibit enhanced thermoelectric performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.