Abstract

One of the first minerals to condense from the early solar nebula was hibonite (CaAl12O19), demonstrating a hexagonal crystal structure. There are five unique aluminum cation sites (M1-M5) in hibonite. Although hibonite contains aluminum, it can also have 3d transitional metals that substitute at aluminum cation sites, such as titanium, and other metals such as magnesium. Titanium can occur in multiple oxidation states, linking to redox conditions. A single substitution occurs when a single aluminum atom is replaced by a single titanium atom, causing the Ti to take on a 3+ oxidation state. On the other hand, Ti achieves an oxidation state of 4+ during a double substitution when a pair of aluminum atoms is replaced by a titanium and a magnesium atom. A density functional theory-based calculation is used to explore the relationship between the number of substitutions and the lattice parameters of the hibonite crystal. The calculated results reveal that the lengths of both unit cells (a and c) increase with an increasing number of single or double substitutions. The rate of increment per substitution depends on the cation sites, M1-M5, and substitution types. Along with the expansion of the unit cell of the hibonite due to the substitution, the substituted unit cell gains energy (and in turn stability) compared to the substituted unit cell without expansion, dependent on the lattice site and substitutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.