Abstract
Intrinsically disordered regions (IDRs) carry out many cellular functions and vary in length and placement in protein sequences. This diversity leads to variations in the underlying compositional biases, which were demonstrated for the short vs. long IDRs. We analyze compositional biases across four classes of disorder: fully disordered proteins; short IDRs; long IDRs; and binding IDRs. We identify three distinct biases: for the fully disordered proteins, the short IDRs and the long and binding IDRs combined. We also investigate compositional bias for putative disorder produced by leading disorder predictors and find that it is similar to the bias of the native disorder. Interestingly, the accuracy of disorder predictions across different methods is correlated with the correctness of the compositional bias of their predictions highlighting the importance of the compositional bias. The predictive quality is relatively low for the disorder classes with compositional bias that is the most different from the “generic” disorder bias, while being much higher for the classes with the most similar bias. We discover that different predictors perform best across different classes of disorder. This suggests that no single predictor is universally best and motivates the development of new architectures that combine models that target specific disorder classes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.