Abstract

Understanding the complexation of aluminum (Al) with dissolved organic matter (DOM) is of great significance for the control of residual Al in drinking water after treatment. Here, we used high-resolution and accurate mass measurements to identify the composition and structure of DOM contributing to the formation of soluble organically-bound Al during coagulation at near neutral pH (pH 7.50). The results showed that the organic compounds contributing to soluble organically-bound Al were primarily phenolic compounds and aliphatic compounds. Among them, phenolic compounds with a sulfonic acid group could greatly enhance the hydrolysis of polymeric Al and the formation of high concentrations of monomeric/oligomeric Al-DOM complexes. These organic molecules had a mass-to-charge ratio concentrated below 350. Based on the assumption that oxygen-containing functional groups providing unsaturation in the molecular structure were carboxyl groups, it was inferred that the maximum number of carboxyl groups in phenolic compounds and aliphatic compounds was concentrated between 1–2 and 2–4, respectively. The presence of these molecules was responsible for soluble organically-bound Al accounting for over 80 % of the total soluble Al in the supernatant after coagulation in this study. These findings deepen the understanding of the complexation of Al with DOM. In drinking water treatment plants, the combination of coagulation with processes that can remove such characteristic organics is beneficial for controlling residual Al.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.