Abstract

The camel is known to survive in harsh environmental conditions, due to its higher digestive efficiency of high-fiber diets compared with other ruminants. However, limited data are available on the microbial community in the rumen of a camel. In this study, the Illumina sequencing of V4 region of 16S rRNA genes based on RNA isolation was employed to get insight into the bacterial and archaeal communities associated with liquid and solid rumen fractions in eight camels under different feeding systems. Camels in group C1 were fed Egyptian clover hay plus concentrates mixture and camels of group C2 were fed fresh Egyptian clover. The results showed that liquid fraction has higher operational taxonomic units (OTUs) than solid fraction, and camel group C1 showed a higher microbial diversity than C2. The UniFrac analysis indicated that the microbial communities in camel groups are distinct. Moreover, phylum Firmicutes and Bacteroidetes dominated the bacterial community and Candidatus Methanomethylophilus dominated the archaeal community with a significant difference in the relative abundance between camel groups. Dominant bacterial genera were Prevotella, Fibrobacteres, Ruminococcus, and Butyrivibrio. There were many negative and positive correlations between and within bacterial and archaeal genera. The composition of microbial community in the rumen of a camel is similar to other ruminants with differences in the abundance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.