Abstract
Block copolymer-based porous carbon fibers (PCFs) exhibit hierarchical porous structures, high surface areas, and exceptional electrochemical properties. However, the design of block copolymers for PCFs remains a challenge in advancing this type of fibrous material for energy storage applications. Herein, we have systematically synthesized a series of poly(methyl methacrylate-block-acrylonitrile) (PMMA-b-PAN) with well-controlled molecular weights and compositions to study the physical and electrochemical properties of PCFs. PCFs are synthesized via electrospinning, self-assembly, oxidation, and pyrolysis with no additives or chemical activation. By adjusting the molecular weights of polyacrylonitrile (PAN) and poly(methyl methacrylate) blocks, we have achieved tunable mesopore sizes ranging from 10.9 to 18.6 nm and specific capacitances varied from 144 to 345 F g–1 at 10 mV s–1. Interestingly, regardless of the volume fraction of PAN, all the block copolymers produce hierarchical porous structures because of the self-assembly and cross-linking of PAN. Block copolymers with a PAN volume fraction of near 50% show the highest surface areas and gravimetric capacitances. The PCFs represent a new platform material with tunable specific surface areas, pore sizes, and electrochemical properties. This work has an immediate impact on designing block copolymers to create PCFs for applications in energy conversion and storage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.