Abstract

Phosphors with high quantum efficiency and thermal stability play a key role in improving the performance of phosphor-converted white light-emitting diodes (pc-WLEDs). A near-UV-pumped LED shows a great advantage due to its reduction of the negative effect of blue light on human health. In this work, we propose a series of near-UV excitable cyan-emitting Eu2+-activated phosphors with a nominal composition of Na2-2xAl11O17+a:xEu2+ (x = 0.01-0.40), which crystallize in a sodium β-alumina phase with a composition close to Na1.22Al11O17.11. An excess amount of the sodium carbonate raw material makes up the volatile Na during the high-temperature process. The noninteger stoichiometric composition promotes the rigidity of the crystal structure with a slight excess of Na insertion into layers between spinel blocks of the NaAl11O17 matrix. The nonequivalent substitution of Na+ by Eu2+ generates intrinsic defects acting as carrier traps. As a result, the phosphor with an optimal nominal composition Na1.6Al11O17+a:0.20Eu2+, under the excitation at 365 nm, shows an asymmetric cyan emission band at 468 nm with internal and external quantum efficiencies of 81.3 and 56.9%, respectively. Remarkably, the phosphor exhibits antithermal quenching within 200 °C. A pc-WLED with a high color rendering index (87.2) suggests great potential of the phosphor in pc-WLEDs. Therefore, a combination of a rigid structure and deep trap level is an effective way in exploring new phosphors with high quantum efficiency and thermal stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.